Introduction to Neurosurgical Subspecialties:

Trauma and Critical Care Neurosurgery

Brian L. Hoh, MD1, Gregory J. Zipfel, MD2 and Stacey Q. Wolfe, MD3

1University of Florida, 2Washington University, Wake Forest University3

THE SOCIETY OF NEUROLOGICAL SURGEONS
Trauma/Critical Care Neurosurgery

• Trauma/critical care neurosurgeons treat patients with:
 • Traumatic brain injury
 • Closed head injury
 • Open head injury: gunshot wounds, knife wounds, projectiles
 • Spine fractures
 • Nontraumatic intracranial hemorrhage
 • Ischemic stroke
 • Manage critical care issues on neurosurgery patients
 • Direct a Neurocritical Care ICU
Trauma/Critical Care Neurosurgery

- Medical and surgical management of patients with traumatic brain injury, spine fractures, and other acute neurosurgical care
- Direct a Neurocritical Care ICU
 - Neurocritical care neurosurgeons
 - Neurocritical trained neurologists
 - Other neurocritical care-trained ICU physicians
 - Residents and medical students
- Fellowship for trauma/critical care neurosurgeons is not required but some may opt for specialized training via fellowship
Case Illustration #1

- 25 yo male fell onto back of head while riding his bike
- Initially brief loss of consciousness, then awoke. 3 hours later acutely lost consciousness.
- Presents to ED with GCS 9 (E2,M5,V2)
Case Illustration #1
Case Illustration #1

- Emergent craniotomy for evacuation of epidural hematoma. Small laceration of transverse sinus noted.
- Immediately regained consciousness. Discharged to home on POD#2.
EPIDURAL HEMATOMA

- Etiology
 - Skull fracture with laceration of middle meningeal artery
 - Skull fracture with dural venous sinus laceration
- High suspicion for early imaging
 - Lucent period prior to deterioration
- Without associated injuries, 100% good outcome with prompt care
 - Any mortality is a system failure or delay in care
- True neurosurgical emergency
Case Illustration #2

• 65 y/o male who fell backward off the back of a golf cart while drinking
• On ASA for CAD
• PE: Confused and combative, yelling
 • Opens eyes to voice
 • Follows commands all extremities
Epidural vs Subdural hematoma
SUBDURAL HEMATOMA

• Associated with underlying brain injury
 • Worse prognosis
• If asymptomatic, may watch if <1cm in diameter
• Treatment
 • Acute- Hyperintense- craniotomy
 • Subacute- Isointense- bur holes
 • Chronic- Hypointense- SEPS (twist drill/suction)
Case Illustration #3

• 83 y/o man s/p drug eluting coronary stent
 • On Plavix and ASA
• Tripped in the driveway 4 weeks ago (No LOC)
• Now with HA and difficulty walking
• PE: Awake with mild STM deficit
 PERRLA, EOMI
 5/5 all extremities, left drift
Chronic Subdural Hematoma
Case Illustration #4

- 24 y/o male fell off bike
- Seizure at the scene
- Normal neurologic exam on arrival
Traumatic Subarachnoid Hemorrhage
Case Illustration #5

- 45 y/o male pedestrian hit by car
- +LOC
- PE: PERRLA
 - Moaning
 - No eye opening
 - Withdrawing
TBI: Coup/Contrecoup

The image illustrates the concepts of coup and contrecoup injuries in traumatic brain injury (TBI). In a coup injury, the brain impacts the skull at the point of impact, while in a contrecoup injury, the brain reacts to the impact by moving the opposite direction.
Contusions

• Parenchymal damage from the bony ridges at base of the skull
 • Associated with edema
 • Worse prognosis
• Potential for “blossoming”
 • Repeat CT within 4-6 hours
Diffuse Axonal Injury

- Deceleration injury - usually MVA
- Shear-strain forces on the axons during rotation/deceleration of head
- Poor prognosis
 - 35% of all TBI deaths
 - Most common cause of coma and severe disability
Neurocritical Care: Treatment of Increased Intracranial Pressure

- Positioning
- Hyperventilation
- Hypertonic therapy (steroids not useful except in tumor swelling)
- CSF drainage
- Decrease brain metabolism
- Surgical decompression
Position Patient Correctly

- Elevate head of bed to 30 degrees
- Maintain head and neck in straight alignment
- Prevent compression of jugular veins by circumferential endotracheal tape, trach ties or cervical collar
- Minimize endotracheal suction and gagging
Hyperventilation

• Mechanism: CO2 vasodilates, causing increased blood flow within the brain
 • If you blow off CO2, you decrease the blood volume of the brain
• Maintain CO2 30-35 for <24 hrs to prevent ischemia
• Never drop CO2 below 30
Hypertonic Therapy

• Use osmotic gradient to pull fluid out of brain and into the vascular space, decreasing brain volume
 • Mannitol
 • Hypertonic saline

• Never use hypotonic fluid, such as 1/2NS or D5W - this causes brain swelling and can cause death

• Avoid Dextrose in fluids to decrease glutamate production
CSF drainage

• Placement of an external ventriculostomy (EVD) to drain CSF and monitor ICP
Decrease Cerebral Metabolic Rate

- Sedation (propofol or precedex for continual neurologic assessment)
- Paralytics
- Barbituate coma
- Control Seizures, Fever, Restlessness, Pain
- Normothermia
- Hypothermia - literature still controversial
Conclusions

• Trauma neurosurgery is one of the central components of a neurosurgical career
• Trauma neurosurgery can be highly rewarding when a preterminal patient can be returned to a normal or near normal life
• Neurocritical care of ICU patients is distinctly different from critical care management of other patient populations
• In addition to cranial and spine trauma, stroke and intracranial hemorrhage are other large critical care populations